

WP10 – Scientific integration and hazard assessment

TEAM

(BPD) Bolseiro de Pós-Doutoramento 1; Carla Maria Lopes Candeias; Joao Filipe de Barros Duarte Fonseca; João Manuel Lima Silva Mata; José Eduardo de Oliveira Madeira; Machiel Simon Bos; Maria Graça Medeiros Silveira; Ricardo Alexandre dos Santos Ramalho; Rui Manuel da Silva Fernandes; Susana Inês da Silva Custódio;

WP10 – Scientific integration and hazard assessment

OBJECTIVES

This task facilitates the interdisciplinary nature of the research to be conducted in the scope of the project, by providing the platform for all project members to interact with a twofold view: a) to address the fullness of the problems at end, focusing on how his or her discipline can contribute to the general goal; and b) to integrate (benefiting from the previous rule) the scientific results produced in the thematic tasks T2 to T9. It is organized in three action lines: AL1 – Volcanic structure; AL2 – Eruptive Dynamics; AL3 – hazard assessment and strategies for risk mitigation.

WP10 – Scientific integration and hazard assessment

GENERAL DESCRIPTION

In order to achieve the central goal of contributing to risk mitigation through robust hazard assessment in support of land use planning, three objectives will be pursued: in-depth investigation of the structure of the volcanic edifice (understanding the past); thorough investigation of the 2014 eruption (understanding the present); assessment of the likelihood of future impacts at different sites (forecasting the future). For each of these objectives, inputs will be received from multiple disciplines. This task will facilitate the integration of results by promoting breadth of knowledge side by side with depth of knowledge. A post-doctoral researcher will be fully dedicated to integrating the results of the project. S(h)e will put particular effort into translating the team's findings into effective strategies for hazard monitoring and risk reduction.

WP10 – Scientific integration and hazard assessment

ACTIVITIES

- T10.1. As part of the kick-off meeting, the Task will organize a brainstorm discussion on interdisciplinarity (M0). Today!
- T10.2. Every three months, the coordinator of each line of action will organize a meeting bringing together the members contributing from different disciplines, for cross-feeding of approaches (M3 to M33).
- T10.3. Every nine months, the Task coordinator will organize a meeting to discuss the progress achieved towards the general goals of the project, promoting the interdisciplinary approach. (M9 to M27)
- T10.4. A task force composed of all task and action line coordinators will integrate the contribution of the different tasks into a volcanic hazard model (M18 to M27).
- T10.5. Recommendations will be drafted for land use planning in Fogo Island aiming at the mitigation of volcanic risk (M27 to M36).

WP10 – Scientific integration and hazard assessment

Gestão do risco vulcânico – o que se faz no presente:

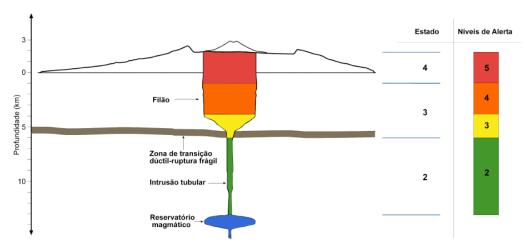
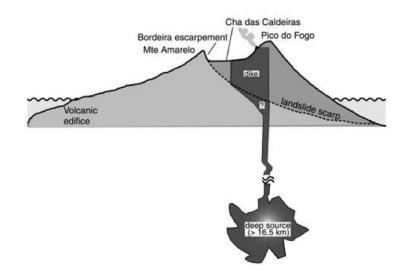


Figura 7.1: Estados pré-erutpivos do Vulcão do Fogo e os níveis de alerta correspondentes (à direita).

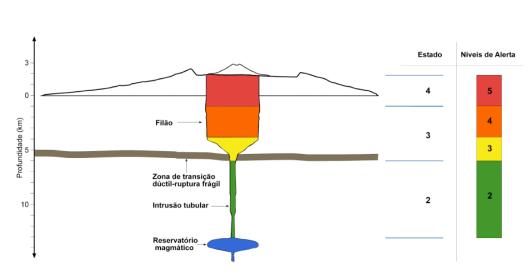
B. Faria, tese de doutoramento, 2009



WP10 – Scientific integration and hazard assessment

Gestão do risco vulcânico – o que se faz no presente:

Figura 7.1: Estados pré-erutpivos do Vulcão do Fogo e os níveis de alerta correspondentes (à direita).


B. Faria, tese de doutoramento, 2009

Day, Heleno and Fonseca, 1999

WP10 – Scientific integration and hazard assessment

Gestão do risco vulcânico – o que se faz no presente:

 $Figura~7.1:~Estados~pr\'e-erutpivos~do~Vulc\~ao~do~Fogo~e~os~n\'eveis~de~alerta~correspondentes~(\`a~direita).$

Nível	Critério	Interpretação	Profundidade (km)	Tempo	
5	Prevalece a sismicidadeTremor permanente	Erupção iminente	2 a O	Idem	
4	∙Pico tilt •Lp's com maior magnitude e número	Erupção muito provável	4 a 2	A determinar no decurso do progresso	
3	•Pico sismicidade •Variaçŏes de tilt	Erupção provável	5 a 4	4 a 40 dias	
2	 Deformação de longo termo (GPS, InSAR) Alteração do ruído 	Erupção possível brevemente	13 a 5	10 dias a 5 meses	
1	Registos habituais	Estado normal			

B. Faria, tese de doutoramento, 2009 Jenkins et al., JAV, in press (aplicação em Novembro 2014)

Tabela 7.1: Resumo dos níveis de alerta para o Vulcão do Fogo.

WP10 – Scientific integration and hazard assessment

Gestão do risco vulcânico – o que se faz no presente:

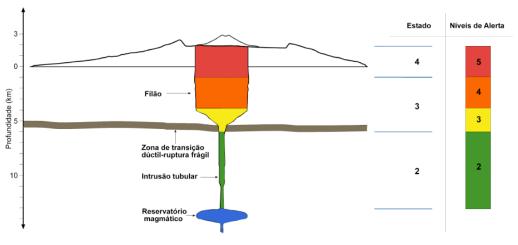


Figura 7.1: Estados pré-erutpivos do Vulcão do Fogo e os níveis de alerta correspondentes (à direita).

Sugestão:

O FIRE pode ajudar a melhorar este modelo.

WP10 – Scientific integration and hazard assessment

Gestão do risco vulcânico – o que se faz no presente:

Sugestão:

Não é a área de intervenção do FIRE!

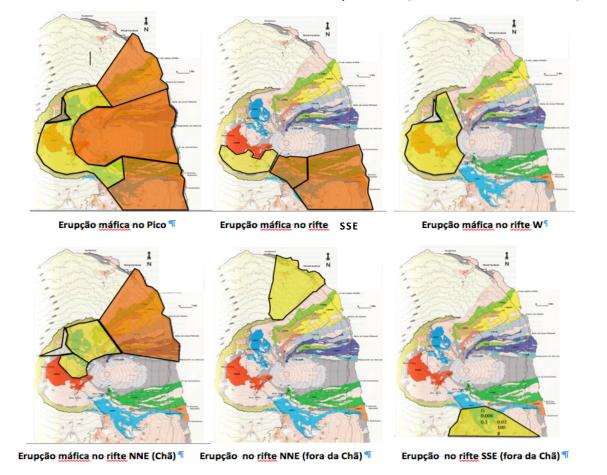
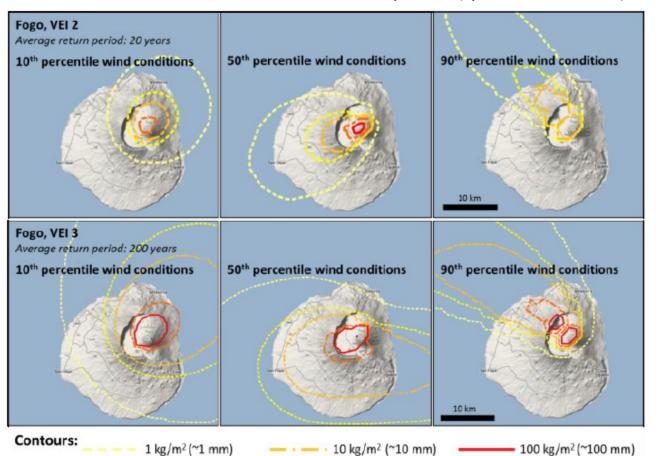

Nível	Critério	Interpretação	Profundidade (km)	Tempo
5	Prevalece a sismicidade Tremor permanente	Erupção iminente	2 a O	ldem
4	•Pico tilt •Lp's com maior magnitude e número	Erupção muito provável	4 a 2	A determinar no decurso do progresso
3	∙Pico sismicidade •Variações de tilt	Erupção provável	5 a 4	4 a 40 dias
2	*Deformação de longo termo (GPS, InSAR) *Alteração do ruído	ongo termo brevemente S, InSAR) ração do		10 dias a 5 meses
1	Registos Estado normal habituais			

Tabela 7.1: Resumo dos níveis de alerta para o Vulcão do Fogo.

WP10 – Scientific integration and hazard assessment

Análise de diferentes cenários eruptivos (escoada de lavas)



WP10 – Scientific integration and hazard assessment

Análise de diferentes cenários eruptivos (queda de cinzas)

50 kg/m2 (~50 mm)

500 kg/m2 (~500 mm)

5 kg/m2 (~5 mm)

Contribuição S. Jenkins

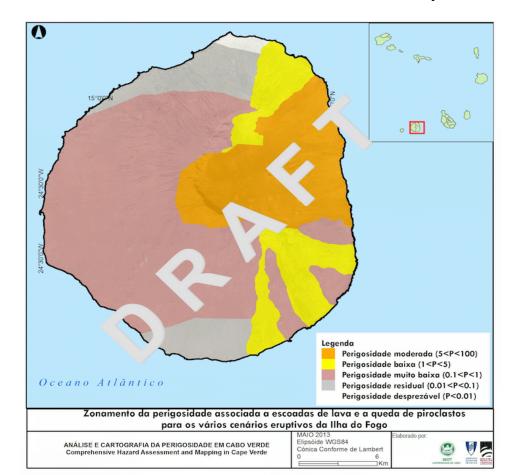
WP10 – Scientific integration and hazard assessment

Tabela 51 - Índices de frequência para os vários cenários eruptivos na Ilha do Fogo.

Cenário	Período de retorno (anos)	Classe de frequência	Índice de frequência
Erupção máfica no rifte NNE dentro da Chã	63	F5 (alta)	1
Erupção máfica no rifte SSE	63	F5 (alta)	1
Erupção máfica através do Pico	100	F4 (moderada)	0.2
Erupção máfica no rifte NNE fora da Chã	167	F4 (moderada)	0.2
Erupção máfica no rifte W	167	F4 (moderada)	0.2

WP10 – Scientific integration and hazard assessment

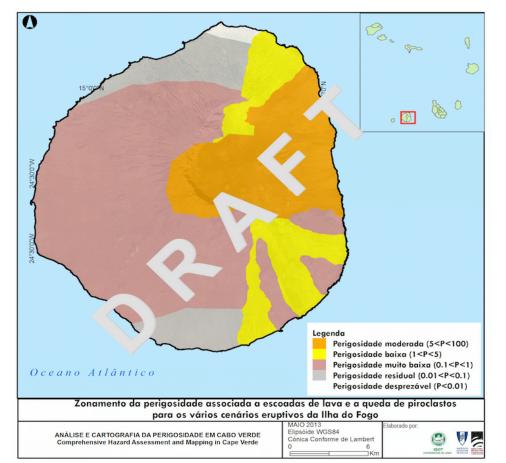
Metodologia MIAVITA de análise da perigosidade vulcânica


Tabela 47 - Níveis de perigosidade correspondentes a cada combinação de equivalente numérico de intensidade e de índice de frequência efetiva. As cores indicam a classificação dos níveis de perigosidade: abaixo de 0.01 – desprezável; de 0.01 a 0.1: residual; de 0.1 a 1: muito baixo; de 1 a 5: baixo; de 5 a 100: moderado; acima de 100: alto. . Adaptado de Thierry et al. (2010).

	Ε	0.5	2.5	15	60	100
IF_{effect}						
0.002		0.001	0.005	0.03	0.12	0.2
0.01		0.005	0.0025	0.15	0.6	1
0.02		0.01	0.05	0.3	1.2	2
0.1		0.05	0.25	1.5	6	10
0.2		0.1	0.5	3	12	20
1		0.5	2.5	15	60	100
2		1	5	30	120	200
10		5	25	150	600	1000

WP10 – Scientific integration and hazard assessment

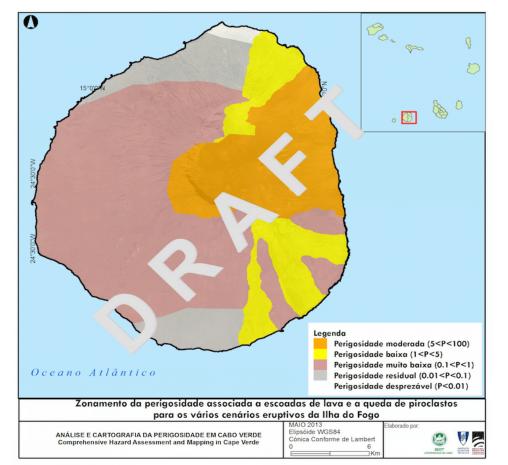
Gestão do risco vulcânico – o que se faz no presente:



WP10 – Scientific integration and hazard assessment

GENERAL DESCRIPTION

In order to achieve the central goal of contributing to risk mitigation through robust hazard assessment in support of land use planning, three objectives will be pursued: in-depth investigation of the structure of the volcanic edifice (understanding the past);



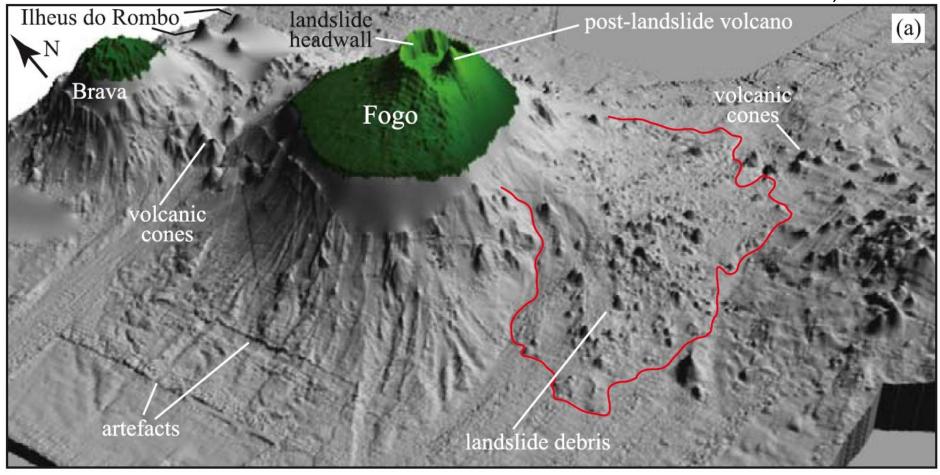
WP10 – Scientific integration and hazard assessment

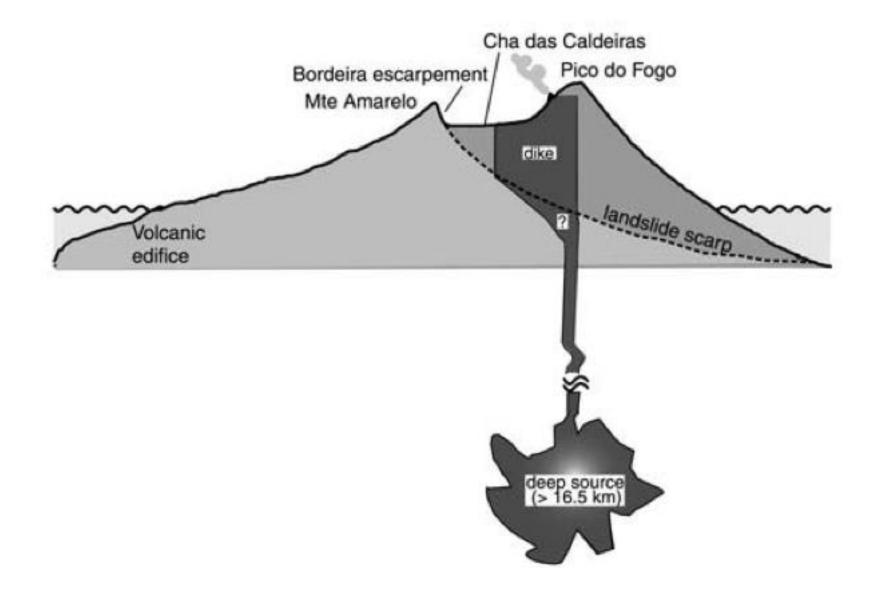
GENERAL DESCRIPTION

In order to achieve the central goal of contributing to risk mitigation through robust hazard assessment in support of land use planning, three objectives will be pursued: in-depth investigation of the structure of the volcanic edifice (understanding the past);

Sugestão:

O FIRE pode ajudar a melhorar este modelo.


Mileu, Fonseca, Zêzere et al., 2014
Estudo realizado para o PNUD, coordenado pela empresa Municipia


WP10 – Scientific integration and hazard assessment

Obrigado!

Masson et al., 2008

